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Introduction

Models of language fall broadly into two categories:
Models of the communicative system are often

formulated as mathematical models based on
simple distributional properties of language,
commonly presented as empirical laws.

Psychological and neurobiological models have focused
largely on the computational constraints
presented by incremental, real-time processing.

Information-theoretic entropy underpins successful
models of both types and provides a more principled
motivation for Zipf’s Law.

Zipf’s Law for frequency

Zipf [1–3] demonstrated that distributional statistics
in language often follow a power law. In particular,
the relationship between frequency (f ) and rank (r)
is given by:

f ∝ 1
r ⇔ f = c

r for some constant c (1)
This is often extended via an exponent, empirically
observed to be near 1, allowing for an easily
estimated slope parameter when plotted log-log:

f = c
rα ⇒ log f = log c

rα = log c − α log r (2)

Ideal relationship between c and α

The probability density function (PDF) for the Pareto
distribution is given by

P(x) = (α− 1)xα−10
xα , x ≥ x0 (3)

For rank data, we know that x = r ≥ 1, which yields

P(r) = α− 1
rα , x ≥ 1 (4)

We recognize this as Zipf’s Law, when c = α− 1.

The emergence of Zipfian distributions in
communication

I Zipf motivated this power law by his principle of
least effort, but did not provide a rigorous
motivation or description of this principle, i.e. how
and why these frequency distributions came to be.

I More recent accounts show that Zipf’s Law
emerges naturally from a minimal set of
assumptions about combined speaker-hearer
effort.[4]

I Several empirical estimates have shown that α
tends to be close to one.[5] Moreover, during first
language acquisition α→ 1, at least in the
Germanic languages.

I Nonetheless, the exponent is often viewed as a
free parameter.[5]

Linking Brains and Behavior: Words as
Experiments

I Friston proposed a theory of neurocomputation
based on the fitting of generative models of
upcoming perceptual stimuli via expectation
maximization.[6, 7]

I Behavior is part of the model-fitting process,
determining how new data is sampled.[8]

I An accurate model follows from minimizing the
(information-theoretic) free energy and surprisal in
the generative models.

I This is achieved by seeking out the most surprising
– i.e. informative – stimuli.

I Language should maximize average surprisal.

Information-theoretic Entropy

Using information theory, we can define surprisal or
self-information rigorously as

I(x) = − log P(x) (5)
The logarithmic transform provides power-law type
scaling. Crucially, the less probable a certain element
is, the closer its probability is to zero and hence the
further its logarithm is away from zero, i.e. the
greater its surprisal.
The expected value of surprisal across an entire set is
called entropy and is given by

H(X ) = −
∫
x∈X

P(x) log P(x) dx (6)

Maximizing entropy in language: tuning the
free parameters

From the Pareto PDF (4):
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As α→∞, P(x) converges to the Dirac
delta-function δx0=1(x) and entropy drops as only
one symbol (word) from a large pool is
meaningful.

As α→ 1, the distribution becomes successively
flatter, but maintaining a spike-like structure with
a thick tail.

As such, we expect that α = 1 is near optimal when
c = α− 1 and that languages will have evolved to
have near optimal α.

Empirical basis

I 310 languages using the translations for the
Universal Declaration of Human Rights provided
by the nltk.corpus Python package.[9]

I OLS regression provides estimates for the intercept
(log c) and slope (−α) from Equation (2).

Actual relationship between α and c

Our ideal estimate assumes c = α− 1.
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But c is closer to α− 0.8 which will bias empirical α.

Empirical estimates across languages
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Across languages, α has a mean of about 0.9. This is
somewhat less than the original predicted idealized
value of α = 1; however, it is line with the bias we
observed in c .

Variation between scripts

Because we are using an orthographic notion of word,
we can consider the influence of the type of
orthography on these estimates.
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Latin-1

Cyrillic

UTF8

Other

Encoding n α
Latin1 190 0.86 ± 0.01
Cyrillic 10 0.74 ± 0.03
UTF8 86 0.90 ± 0.03
Other 110 0.85 ± 0.02
All 310 0.85 ± 0.01

Conclusion

Frequency-based explanations beg the question X
does this because X is more frequent, but how did X
become more frequent in the first place?
I We have provided a principled motivation and
empirical validation for the free parameter α.

I The observed bias in c suggests why previous work
has found α to be near one, but rarely exactly
one, even when corrected for observation error.

I Together with previous work, this provides a
principled causal explanation for the emergence of
Zipfian frequency distributions.

I This is a first step towards grounding empirical
laws in the processing constraints and strategies of
individual language users.

Having parameters that relate back to assumptions
about basic cognitive strategies and processing
constraints is far more valuable than having
parameters related to uninformed curve fitting.
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