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Introduction Information-theoretic Entropy Empirical estimates across languages
Models of language fall broadly into two categories: Using information theory, we can define surprisal or >0
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Across languages, « has a mean of about 0.9. This is
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This is often extended via an exponent, empirically Because we are using an orthographic notion of word,
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The probability density function (PDF) for the Pareto 10°
distribution is given by

P(X) — (OK _)3'C3X6Il’ X > XO (3) 1001.0 1.2 1.4 1(;46 1.8 2.0 2.2 >

For rank data, we know that x = r > 1, which yields

P(f)ZOK_1 x > 1 () H(X):|0g(&il>+<&il> YRR

re B As o — 00, P(x) converges to the Dirac o 0 R LA A1
We recognize this as Zipt's Law, when ¢ = o — 1. delta-function d,,—1(x) and entropy drops as only MY etedta
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Empirical basis
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Actual relationship between o and ¢ » Together with previous work, this provides a
principled causal explanation for the emergence of

Zipfian frequency distributions.

Linking Brains and Behavior: Words as Our ideal estimate assumes ¢ = o — 1.
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all source code available online https://bitbucket.org/palday/evolang/
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