Tracking the emergence of meaning in the brain during natural story comprehension Jona Sassenhagen Ina Bornkessel-Schlesewsky Phillip Alday

South Australia

Introduction

Brain activity indexes a word's contextual fit into a rich model based on prior experiences [1, 2] and has been characterised as reflecting the spreading activation of semantic features in long-term memory [3, 4]. Following [5], we created a pseudo Bayesian model of contextual support using data from a large corpus [6]. Context is infinite, yet is exponentially dampened [7], thus near or oft repeated contextual support dominates the activation function.

Experiment

52 subjects listened to a short story. EEG was cleaned of artifacts with ICA [8] and 52×1682 segments extracted, time locked to the onset of content words.

Primitives

Semantic association can be modelled with a few primitives based on statistical regularities of the input. cooc(x, y) = Shared co-occurrence of two wordssig(x, y) = Significance of shared co-occurrence of two words (measure of co-occurrence frequency) $\omega(x) = \text{Logarithmic frequency class}$ (bigger is rarer=more surprising) $\mathcal{I}(x) = \text{index of most recent occurrence of lexeme}$ $\mathcal{N}(x) =$ number of previous occurrences of lexeme $\mathcal{NC}(x) =$ number of previous lexemes for which this lexeme is a co-occurrence

Predictor vs. Logarithmic Frequency Class

Start of Story Landstraße.

•• •

Frequency and the pseudo-Bayesian predictor are initially similar, reflecting the dominance of baseline frequency in the absence of a rich context. By the end of the story, however, their divergence becomes more pronounced as the amount of prior information available has greatly increased.

increases expectation

Examine all previous co-occurences

Contextual Support (Semantic Priming)

Models

Predictors were compared to scaled, single-trial mean EEG via mixed effects models using the R package lme4.

(ROI and its interactions omitted)

Semantic support correlated negatively with EEG amplitude in the N400 time window. While frequency is a decent global prior, the stronger interaction of our predictor with index allows for better modelling of the constrained local context.

Conclusion

Explicit computational models allow the prediction of neural activity corresponding to semantic processing for naturalistic stimuli, beyond categorical designs and highly artificial task contests. Our pseudo-Bayesian model of semantic expectability interacts dynamically with context during story comprehension. The complex semantics of coherent narratives result in more complex neural patterns than observed in classical experiments.

P double prime (with 2nd-order concurrence prior)

Literature

[1] K. J. Friston (2005). Philosophical transactions of the Royal Society of London. Series B, Biological sciences. [2] M. S. George, S. Mannes, et al. (1994). Journal of Cognitive Neuroscience. [3] S. Laszlo & D. C. Plaut (2012). Brain and language. [4] J. L. Elman (2004). *Trends in Cognitive Science*. [5] M. M. Kutas & K. D. Federmeier (2011). Annual review of psychology. [6] U. Quasthoff, M. Richter, et al. (2006). [7] J. Jonides, R. L. Lewis, et al. (2008). Annual review of psychology. [8] I. Winkler, S. Haufe, et al. (2011). Behavioral and Brain Functions. [9] D. Bates, M. Maechler, et al. (2014). Ime4: Linear mixed-effects models using S4 classes. R package version 1.1-7.