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Introduction

Brain activity indexes a word's contextual fit into a rich model based on prior Semantic association can be modelled with a few primitives based on statistical
experiences [1, 2] and has been characterised as reflecting the spreading regularities of the input.
activation of semantic features in long-term memory [3, 4]. Following [5], we cooc(x, y) = Shared co-occurrence of two words
created a pseudo Bayesian model of contextual support using data from a large sig(x, y) = Significance of shared co-occurrence of two words
corpus [6]. Context is infinite, yet is exponentially dampened [7], thus near or oft (measure of co-occurrence frequency)
repeated contextual support dominates the activation function. w(x) = Logarithmic frequency class
)
Z(x) = index of most recent occurrence of lexeme
52 subjects listened to a short story. EEG was cleaned of artifacts with ICA [8] N (x) = number of previous occurrences of lexeme
and 52 x 1682 segments extracted, time locked to the onset of content words. NC(x) = number of previous lexemes for which this lexeme is a co-occurrence
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Frequency and the pseudo-Bayesian predictor are initially similar, reflecting the dominance of baseline frequency in the absence of a rich context. By the end of the story,
however, their divergence becomes more pronounced as the amount of prior information available has greatly increased.

Contextual Support (Semantic Priming) _Models

surprisal based on Predictors were compared to scaled, single-trial mean EEG via

Frequency interaction ' '
corous frequencv and : : y mixed effects models using the R package 1lme4.
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Estimate Std. Error t value Estimate Std. Error t value
.\ - .. (Intercept)  0.012  0.0088 1.4 (Intercept) 0.11 0.017 6.4
Repetition Priming index -2.2¢-05  85e-06 -2.6 index -9.4e-05 1.8e-05  -5.2
_ _ pred -0.014 0.0011 -13 fre@ -0.013 0.0012 -11
Repetition priming reduces amplitude Decay of effect with time index:pred 1.3e-05  1.1e-06 12 index:freq  1le-05  1.3e-06 8

since last seen

(ROI and its interactions omitted)
1+ | log(n —Z(x,) + 1)| — [log, N(Xnﬂ Semantic support correlated negatively with EEG amplitude in the

N400 time window. While frequency is a decent global prior, the
='min {R(x,), P(x,, m)} stronger interaction of our predictor with index allows for better

— Additional repetition modelling of the constrained local context.
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Decay can't increase amplitude beyond baseline o _ o
Explicit computational models allow the prediction of neural

activity corresponding to semantic processing for naturalistic
stimuli, beyond categorical designs and highly artificial task
contests. Our pseudo-Bayesian model of semantic expectability
interacts dynamically with context during story comprehension.
The complex semantics of coherent narratives result in more
S|g (x,, )N C(y) complex neural patterns than observed in classical experiments.

Pseudo-Bayesian Prediction (Lexeme-specific prediction)
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