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Introduction

Brain activity indexes a word’s contextual fit into a rich model based on prior
experiences [1, 2] and has been characterised as reflecting the spreading
activation of semantic features in long-term memory [3, 4]. Following [5], we
created a pseudo Bayesian model of contextual support using data from a large
corpus [6]. Context is infinite, yet is exponentially dampened [7], thus near or oft
repeated contextual support dominates the activation function.

Experiment

52 subjects listened to a short story. EEG was cleaned of artifacts with ICA [8]
and 52× 1682 segments extracted, time locked to the onset of content words.

Primitives

Semantic association can be modelled with a few primitives based on statistical
regularities of the input.
cooc(x , y) = Shared co-occurrence of two words
sig(x , y) = Significance of shared co-occurrence of two words

(measure of co-occurrence frequency)
ω(x) = Logarithmic frequency class

(bigger is rarer=more surprising)
I(x) = index of most recent occurrence of lexeme
N (x) = number of previous occurrences of lexeme
NC(x) = number of previous lexemes for which this lexeme is a co-occurrence

Predictor vs. Logarithmic Frequency Class
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End of Story

Frequency and the pseudo-Bayesian predictor are initially similar, reflecting the dominance of baseline frequency in the absence of a rich context. By the end of the story,
however, their divergence becomes more pronounced as the amount of prior information available has greatly increased.

Contextual Support (Semantic Priming)

P(xn,m) = ω(xn)− log

m∑

k=1
e−
√
k

√√√√ω(xn)ω(xn−i)
| cooc (xn, xn−i)|



surprisal based on
corpus frequency and
semantic-contextual

compatibility
scaling

Length of context window Number of shared co-occurrences
(reduction in surprise)

Exponential dampening
Frequency interaction
(geometric mean)

Repetition Priming

R(xn) = 1 + b log(n − I(xn) + 1)c − dlog2N (xn)e

P ′(xn,m) = min {R(xn),P(xn,m)}

P prime(d)

Repetition priming reduces amplitude Decay of effect with time
since last seen

Decay can’t increase amplitude beyond baseline

Additional repetition
strengthens the effect

Pseudo-Bayesian Prediction (Lexeme-specific prediction)

Π(xn) = log10
1 + ∑

y ∈ cooc(xn,xi )
i < n

sig (xn, y)NC(y)


P ′′(xn,m) = dP ′(xn,m)−Π(xn)e

P double prime
(with 2nd-order concurrence prior)

Prior probability of a specific lexeme
further reduces amplitude Baseline co-occurence frequency

increases expectation

Repeated co-occurence
increases expectation

Examine all previous co-occurences

Models

Predictors were compared to scaled, single-trial mean EEG via
mixed effects models using the R package lme4.

Estimate Std. Error t value
(Intercept) 0.012 0.0088 1.4

index -2.2e-05 8.5e-06 -2.6
pred -0.014 0.0011 -13

index:pred 1.3e-05 1.1e-06 12

Estimate Std. Error t value
(Intercept) 0.11 0.017 6.4

index -9.4e-05 1.8e-05 -5.2
freq -0.013 0.0012 -11

index:freq 1e-05 1.3e-06 8

(ROI and its interactions omitted)
Semantic support correlated negatively with EEG amplitude in the
N400 time window. While frequency is a decent global prior, the
stronger interaction of our predictor with index allows for better
modelling of the constrained local context.

Conclusion

Explicit computational models allow the prediction of neural
activity corresponding to semantic processing for naturalistic
stimuli, beyond categorical designs and highly artificial task
contests. Our pseudo-Bayesian model of semantic expectability
interacts dynamically with context during story comprehension.
The complex semantics of coherent narratives result in more
complex neural patterns than observed in classical experiments.
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